Copied to
clipboard

G = C32⋊D15order 270 = 2·33·5

2nd semidirect product of C32 and D15 acting via D15/C5=S3

non-abelian, supersoluble, monomial

Aliases: He32D5, C322D15, (C3×C15)⋊2S3, C5⋊(He3⋊C2), (C5×He3)⋊2C2, C15.2(C3⋊S3), C3.2(C3⋊D15), SmallGroup(270,19)

Series: Derived Chief Lower central Upper central

C1C3C5×He3 — C32⋊D15
C1C3C15C3×C15C5×He3 — C32⋊D15
C5×He3 — C32⋊D15
C1C3

Generators and relations for C32⋊D15
 G = < a,b,c,d | a3=b3=c15=d2=1, cac-1=ab=ba, dad=a-1b-1, bc=cb, bd=db, dcd=c-1 >

45C2
3C3
3C3
3C3
3C3
15S3
15S3
15S3
15S3
45C6
9D5
3C15
3C15
3C15
3C15
15C3×S3
15C3×S3
15C3×S3
15C3×S3
3D15
3D15
3D15
3D15
9C3×D5
5He3⋊C2
3C3×D15
3C3×D15
3C3×D15
3C3×D15

Smallest permutation representation of C32⋊D15
On 45 points
Generators in S45
(2 17 33)(3 34 18)(5 20 36)(6 37 21)(8 23 39)(9 40 24)(11 26 42)(12 43 27)(14 29 45)(15 31 30)
(1 16 32)(2 17 33)(3 18 34)(4 19 35)(5 20 36)(6 21 37)(7 22 38)(8 23 39)(9 24 40)(10 25 41)(11 26 42)(12 27 43)(13 28 44)(14 29 45)(15 30 31)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)(31 32)(33 45)(34 44)(35 43)(36 42)(37 41)(38 40)

G:=sub<Sym(45)| (2,17,33)(3,34,18)(5,20,36)(6,37,21)(8,23,39)(9,40,24)(11,26,42)(12,43,27)(14,29,45)(15,31,30), (1,16,32)(2,17,33)(3,18,34)(4,19,35)(5,20,36)(6,21,37)(7,22,38)(8,23,39)(9,24,40)(10,25,41)(11,26,42)(12,27,43)(13,28,44)(14,29,45)(15,30,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(31,32)(33,45)(34,44)(35,43)(36,42)(37,41)(38,40)>;

G:=Group( (2,17,33)(3,34,18)(5,20,36)(6,37,21)(8,23,39)(9,40,24)(11,26,42)(12,43,27)(14,29,45)(15,31,30), (1,16,32)(2,17,33)(3,18,34)(4,19,35)(5,20,36)(6,21,37)(7,22,38)(8,23,39)(9,24,40)(10,25,41)(11,26,42)(12,27,43)(13,28,44)(14,29,45)(15,30,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(31,32)(33,45)(34,44)(35,43)(36,42)(37,41)(38,40) );

G=PermutationGroup([[(2,17,33),(3,34,18),(5,20,36),(6,37,21),(8,23,39),(9,40,24),(11,26,42),(12,43,27),(14,29,45),(15,31,30)], [(1,16,32),(2,17,33),(3,18,34),(4,19,35),(5,20,36),(6,21,37),(7,22,38),(8,23,39),(9,24,40),(10,25,41),(11,26,42),(12,27,43),(13,28,44),(14,29,45),(15,30,31)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24),(31,32),(33,45),(34,44),(35,43),(36,42),(37,41),(38,40)]])

32 conjugacy classes

class 1  2 3A3B3C3D3E3F5A5B6A6B15A15B15C15D15E···15T
order1233333355661515151515···15
size14511666622454522226···6

32 irreducible representations

dim1122236
type+++++
imageC1C2S3D5D15He3⋊C2C32⋊D15
kernelC32⋊D15C5×He3C3×C15He3C32C5C1
# reps11421644

Matrix representation of C32⋊D15 in GL5(𝔽31)

030000
130000
00100
002650
001025
,
10000
01000
002500
000250
000025
,
36000
259000
001240
000301
000300
,
259000
36000
001240
000300
000301

G:=sub<GL(5,GF(31))| [0,1,0,0,0,30,30,0,0,0,0,0,1,26,1,0,0,0,5,0,0,0,0,0,25],[1,0,0,0,0,0,1,0,0,0,0,0,25,0,0,0,0,0,25,0,0,0,0,0,25],[3,25,0,0,0,6,9,0,0,0,0,0,1,0,0,0,0,24,30,30,0,0,0,1,0],[25,3,0,0,0,9,6,0,0,0,0,0,1,0,0,0,0,24,30,30,0,0,0,0,1] >;

C32⋊D15 in GAP, Magma, Sage, TeX

C_3^2\rtimes D_{15}
% in TeX

G:=Group("C3^2:D15");
// GroupNames label

G:=SmallGroup(270,19);
// by ID

G=gap.SmallGroup(270,19);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,-3,41,182,727,1443]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^15=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=a^-1*b^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊D15 in TeX

׿
×
𝔽